Abstract

Autophagy, a conserved pathway for bulk cellular degradation and recycling in eukaryotes, regulates proper turnover of organelles, membranes and certain proteins. Such regulated degradation is important for cell growth and development particularly during environmental stress conditions, which act as key inducers of autophagy. We found that autophagy and MoATG8 were significantly induced during asexual development in Magnaporthe oryzae. An RFP-tagged MoAtg8 showed specific localization and enrichment in aerial hyphae, conidiophores and conidia. We confirmed that loss of MoATG8 results in dramatically reduced ability to form conidia, the asexual spores that propagate rice-blast disease. Exogenous supply of glucose or sucrose significantly suppressed the conidiation defects in a MoATG8-deletion mutant. Comparative proteomics based identification and characterization of Gph1, a glycogen phosphorylase that catalyzes glycogen breakdown, indicated that autophagy-assisted glycogen homeostasis is likely important for proper aerial growth and conidiation in Magnaporthe. Loss of Gph1, or addition of G6P significantly restored conidiation in the Moatg8Δ mutant. Overproduction of Gph1 led to reduced conidiation in wild-type Magnaporthe strain. We propose that glycogen autophagy actively responds to and regulates carbon utilization required for cell growth and differentiation during asexual development in Magnaporthe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.