Abstract

The Huygens probe arrived at Saturn's moon, Titan, January 14,2005, unveiling a world that is radically different from any other in the solar system. The data obtained, complemented by continuing observations from the Cassini spacecraft, show methane lakes, river channels and drainage basins, sand dunes, cryovolcanos and sierras. This has led to an enormous scientific interest in a follow-up mission to Titan, using a robotic lighter-than-air vehicle (or aerobot). Aerobots have modest power requirements, can fly missions with extended durations, and have very long distance traverse capabilities. They can execute regional surveys, transport and deploy scientific instruments and in-situ laboratory facilities over vast distances, and also provide surface sampling at strategic science sites. This describes our progress in the development of the autonomy technologies that will be required for exploration of Titan. We provide an overview of the autonomy architecture and some of its key components. We also show results obtained from autonomous flight tests conducted in the Mojave Desert.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.