Abstract

Stable communication plays an important role in many autonomous robotic applications, particularly in challenging environments that lack communication infrastructures. At present, there exists a high demand for wireless communication networks that can be quickly established to operate devices or agents, such as tasked mobile robots. Eliminating the bottlenecks in data transmission and optimizing the communication ability of base stations, mobile robots, and clients are necessary to ensure stable wireless communication. To solve the problem, an efficient approach is proposed by equipping Wi-Fi routers on mobile robots to enable and enhance dynamic communication ability. First, two specific Wi-Fi models are proposed to detect the distribution of Wi-Fi signals over operating environments and assist in the navigation of relay robots. A visual-laser simultaneous localization and mapping is proposed to establish an environmental map and further localize relay robots. A rapidly exploring random trees-based motion planning method is utilized to identify the target relay locations with optimal communication ability based on the built Wi-Fi signal distribution. Mobile relay robots are controlled automatically to the corresponding target locations, and an ad-hoc wireless network with good quality is established. The experimental results are presented to demonstrate the effectiveness of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.