Abstract
Single-image dehazing is an ill-posed problem that has attracted a myriad of research efforts. However, virtually all methods proposed thus far assume that input images are already affected by haze. Little effort has been spent on autonomous single-image dehazing. Even though deep learning dehazing models, with their widely claimed attribute of generalizability, do not exhibit satisfactory performance on images with various haze conditions. In this paper, we present a novel approach for autonomous single-image dehazing. Our approach consists of four major steps: sharpness enhancement, adaptive dehazing, image blending, and adaptive tone remapping. A global haze density weight drives the adaptive dehazing and tone remapping to handle images with various haze conditions, including those that are haze-free or affected by mild, moderate, and dense haze. Meanwhile, the proposed approach adopts patch-based haze density weights to guide the image blending, resulting in enhanced local texture. Comparative performance analysis with state-of-the-art methods demonstrates the efficacy of our proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.