Abstract
Large-scale 3D autonomous self-reconfigurable modular robots are made of numerous interconnected robotic modules that operate in a close packing. The modules are assumed to have their own CPU and memory, and are only able to communicate with their direct neighbors. As such, the robots embody a special computing architecture: a distributed memory and distributed CPU system with a local message-passing interface. The modules can move and rearrange themselves changing the robot's connection topology. This may potentially cause mechanical failures (e.g., overloading of some inter-modular connections), which are irreversible and need to be detected in advance. In the present contribution, we further develop the idea of performing model-based detection of mechanical failures, posed in the form of balance equations solved by the modular robot itself in a distributed manner. A special implementation of the Conjugate Gradient iterative solution method is proposed and shown to greatly reduce the required number of iterations compared with the weighted Jacobi method used previously. The algorithm is verified in a virtual test bed—the VisibleSim emulator of the modular robot. The assessments of time-, CPU-, communication- and memory complexities of the proposed scheme are provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.