Abstract
The availability of empirical data that capture the structure and behaviour of complex networked systems has been greatly increased in recent years; however, a versatile computational toolbox for unveiling a complex system's nodal and interaction dynamics from data remains elusive. Here we develop a two-phase approach for the autonomous inference of complex network dynamics, and its effectiveness is demonstrated by the tests of inferring neuronal, genetic, social and coupled oscillator dynamics on various synthetic and real networks. Importantly, the approach is robust to incompleteness and noises, including low resolution, observational and dynamical noises, missing and spurious links, and dynamical heterogeneity. We apply the two-phase approach to infer the early spreading dynamics of influenza A flu on the worldwide airline network, and the inferred dynamical equation can also capture the spread of severe acute respiratory syndrome and coronavirus disease 2019. These findings together offer an avenue to discover the hidden microscopic mechanisms of a broad array of real networked systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.