Abstract

Deep learning methods have exhibited the great capacity to process object detection tasks, offering a practical and viable approach in many applications. When researchers have advanced deep learning models to improve their performance, the model derived from the algorithmic improvement may itself require complementary increases in computational and power demands. Recently, model compression and pruning techniques have received more attention to promote the wide employment of the DNN model. Although these techniques have achieved a remarkable performance, the class imbalance issue during the mode compression process does not vanish. This paper exploits the Autonomous Binarized Focal Loss Enhanced Model Compression (ABFLMC) model to address the issue. Additionally, our proposed ABFLMC can automatically receive the dynamic difficulty term during the training process to improve performance and reduce complexity. A novel hardware architecture is proposed to accelerate inference. Our experimental results show that the ABFLMC can achieve higher accuracy, faster speed, and smaller model size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.