Abstract
We describe the automorphism group of the endomorphism semigroup End ( K [ x 1 , … , x n ] ) of ring K [ x 1 , … , x n ] of polynomials over an arbitrary field K. A similar result is obtained for automorphism group of the category of finitely generated free commutative–associative algebras of the variety CA commutative algebras. This solves two problems posed by B. Plotkin (2003) [18, Problems 12 and 15]. More precisely, we prove that if φ ∈ Aut End ( K [ x 1 , … , x n ] ) then there exists a semi-linear automorphism s : K [ x 1 , … , x n ] → K [ x 1 , … , x n ] such that φ ( g ) = s ∘ g ∘ s − 1 for any g ∈ End ( K [ x 1 , … , x n ] ) . This extends the result obtained by A. Berzins for an infinite field K.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.