Abstract
For an ordered setP letP P denote the set of all isotone self-maps on P, that is, all mapsf fromP toP such thatx≥y impliesf(x)≥f(y), and let Aut (P) the set of all automorphisms onP, that is, all bijective isotone self-maps inP P . We establish an inequality relating ¦P P ¦ and ¦Aut(P)¦ in terms of the irreducibles ofP. As a straightforward corollary, we show that Rival and Rutkowski's automorphism conjecture is true for lattices. It is also true for ordered sets with top and bottom whose covering graphs are planar.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.