Abstract

Military conflict is one of the types of conflict situations. The automation of simulated battlefield is a domain of Computer Generated Forces (CGF) systems or semi-automated forces (SAF or SAFOR) (Henninger et al., 2000; Lee & Fishwick, 1995; Longtin & Megherbi, 1995; Lee, 1996; Mohn, 1994; Petty, 1995). CGF or SAF (SAFOR) is a technique, which provides a simulated opponent using a computer system that generates and controls multiple simulation entities using software and possibly a human operator. In the case of Distributed Interactive Simulation (DIS) systems, the system is intended to provide a simulated battlefield which is used for training military personnel. The advantages of CGF are well-known (Petty, 1995): they lower the cost of a DIS system by reducing the number of standard simulators that must be purchased and maintained; CGF can be programmed, in theory, to behave according to the tactical doctrine of any desired opposing force, and so eliminate the need to train and retrain human operators to behave like the current enemy; CGF can be easier to control by a single person than an opposing force made up of many human operators and it may give the training instructor greater control over the training experience. One of the elements of the CGF systems is module for movement planning and simulation of military objects. In many of existing simulation systems there are different solutions regarding to this subject. In the JTLS system (JTLS, 1988) terrain is represented using hexagons with sizes ranging from 1km to 16km. In the CBS system (Corps Battle Simulation, 2001) terrain is similarly represented, but vectoral-region approach is additionally applied. In both of these systems there are manual and automatic methods for route planning (e.g. in the CBS controller sets intermediate points (coordinates) for route). In the ModSAF (Modular Semi-Automated Forces) system in module “SAFsim”, which simulates the entities, units, and environmental processes the route planning component is located (Longtin & Megherbi, 1995). In the paper (Mohn, 1994) implementation of a Tactical Mission Planner for command and control of Computer Generated Forces in ModSAF is presented. In the work (Benton et al., 1995) authors describe a combined on-road/off-road planning system that was closely integrated with a geographic information system and a simulation system. Routes can be planned for either single columns or multiple columns. For multiple columns, the planner keeps track of the temporal location of each column and insures they will not occupy the same space at the same time. In the same paper the Hierarchic Route

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.