Abstract

A significant amount of CH4 is emitting from livestock manure (LM) storage tank, which is being counted according to the guidelines provided by the Intergovernmental Panel on Climate Change (IPCC). Among various parameters affecting CH4 conversion factor (MCF) of LM, temperature is known as the most influential factor. As a degree of temperature, atmospheric temperature (Ta), not the manure temperature (Tm), is used for determining the MCF. Currently, the closed-type tank is more common than open-type tank, which would cause the substantial difference between Ta and Tm, probably due to the automatic temperature rise (ATR). Here, we repeatedly observed the ATR by storing pig slurry (PS) in a pilot-scale tank (30 m3, surface/volume ratio of 1.9), and its consequent impact on the increased CH4 emissions by comparing with the results from a lab-scale tank (1 L, surface/volume ratio of 72.2) controlled at 30 °C. As storage began, the Tm increased gradually from 16 to 23 °C to above 30 °C even in winter (-5 °C < Ta < 15 °C). During 30 d of storage, the CH4 emissions of 1.3–2.5 kg CH4/ton PS (MCF 26–29%) was observed in the lab-scale tank, while the emissions was increased to 2.6–4.2 kg CH4/ton PS (MCF 40–50%) in the pilot-scale tank (Two-Tail test, |tt|<|tc|). For the first time, a detailed heat energy balance considering the waste heat from organic degradation, the heat requirement for warm up, and the heat loss by convection, was conducted, proving that the waste heat generated during storage was enough to reach above 30 °C. Cooling-down of LM at 20 °C was found to be effective for reducing CH4 emissions by 90%, which sufficiently offset the greenhouse gas emissions in power consumption for cooling. Our findings strongly suggest that more CH4 is emitting from LM storage tank than expected, and therefore, the IPCC needs to develop guidelines more accurately in determining MCF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.