Abstract

The traditional methods of analyzing stomatal traits are mostly manual observation and measurement. These methods are time-consuming, labor-intensive, and inefficient. Some methods have been proposed for the automatic recognition and counting of stomata, however most of those methods could not complete the automatic measurement of stomata parameters at the same time. Some non-deep learning methods could automatically measure the parameters of stomata, but they could not complete the automatic recognition and detection of stomata. In this paper, a deep learning-based method was proposed for automatically identifying, counting and measuring stomata of maize (Zea mays L.) leaves at the same time. An improved YOLO (You Only Look Once) deep learning model was proposed to identify stomata of maize leaves automatically, and an entropy rate superpixel algorithm was used for the accurate measurement of stomatal parameters. According to the characteristics of the stomata images data set, the network structure of YOLOv5 was modified, which greatly reduced the training time without affecting the recognition performance. The predictor in YOLO deep learning model was optimized, which reduced the false detection rate. At the same time, the 16-fold and 32-fold down-sampling layers were simplified according to the characteristics of stomatal objects, which improved the recognition efficiency. Experimental results showed that the recognition precision of the improved YOLO deep learning model reached 95.3% on the maize leaves stomatal data set, and the average accuracy of parameter measurement reached 90%. The proposed method could fully automatically complete the recognition, counting and measurement of stomata of plants, which can help agricultural scientists and botanists to conduct large-scale researches of stomatal morphology, structure and physiology, as well as the researches combined with genetic analysis or molecular-level analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.