Abstract
In this paper we present a method for the fully automatic segmentation of cell nuclei from 3D confocal laser microscopy images. The method is based on the combination of previously proposed techniques which have been refined for the requirements of this task. A 3D extension of a wave propagation technique applied to gradient magnitude images allows us a precise initialization of elastically deformable Fourier models and therefore a fully automatic image analysis. The shape parameters are transformed into invariant descriptors and provide the basis of a statistical analysis of cell nucleus shapes. This analysis will be carried out in order to determine average intersection lengths between cell nuclei and single particle tracks of ionizing radiation. This allows a quantification of absorbed energy on living cells leading to a better understanding of the biological significance of exposure to radiation in low doses.KeywordsCell NucleusPoint Spread FunctionAutomatic SegmentationStatistical Shape ModelConfocal Laser Scanning Microscopy ImageThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.