Abstract

Feature recognition systems are now widely identified as a cornerstone for conceiving an automated process planning system. Various techniques have been reported in the literature, but a few of them acquired a status of generic methodology. A flexible and robust approach is demanded for recognising a wide variety of features, e.g., non-interacting, interacting circular and slanting features. This research aims to exploit the concept of the ray - firing technique, in which a 2D surface pattern for each feature is generated and information is extracted from these patterns to correlate it with the corresponding machining features. The system first defines a virtual surface and then probing rays are dropped from each point of this surface to the 2.5D features of the B-rep solid model. According to the length of rays between the bottom face of the 2.5D machining features and the virtual surface, 2D feature patterns are formed for each machining feature. Finally, features are recognised using an algorithm described in this article. Different types of examples have been considered to demonstrate the effectiveness of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.