Abstract

Catheter ablation is a common treatment option for drug-refractory atrial fibrillation. In many cases, pulmonary vein isolation is the treatment of choice. With current fluoro overlay methods or electroanatomic mapping systems, it is possible to visualize three-dimensional (3-D) anatomy as well as target ablation lines to provide additional context information. Today, however, these lines need to be set manually before the procedure by the physician, which may interrupt the clinical workflow. As a solution, we present an automatic approach for the planning of ablation target lines. Our method works on surface models extracted from 3-D images. To propose suitable ablation lines, a reference model annotated with reference ablation lines is nonrigidly registered to the model segmented from a new patient's 3-D data. After registration, the reference plan is transferred from the reference anatomy to the individual patient anatomy. Due to the high anatomical variations observed in clinical practice, additional landmark constraints are employed in the registration process to increase the robustness of our approach. We evaluated our method on 43 clinical datasets by benchmarking it against professionally planned ablation lines and achieved an average error over all datasets of [Formula: see text]. A qualitative evaluation of the ablation planning lines matched clinical expectations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.