Abstract

Pavement crack detection and characterization is a fundamental part of road intelligent maintenance systems. Due to the high non-uniformity of cracks, topological complexity, and similar noise from crack texture, the challenge arises in this domain with automated crack detection and classification in a complex environment. In this work, an overarching framework for a universal and robust automatic method that simultaneously characterizes the type of crack and its severity level was developed. For crack detection, we propose a novel and efficient crack detection network that captures the crack context information by establishing a multiscale dilated convolution module. On this foundation, an attention mechanism is introduced to further refine the high-level features. Moreover, the rich features at different levels are fused in an upsampling module to generate more detailed crack detection results. For crack classification, a novel characterization algorithm is developed to classify the type of crack after detection. The crack segment branches are then merged and classified into four types: transversal, longitudinal, block, and alligator; the severity levels of cracks are assessed by calculating the average width and distance between the crack branches. The proposed crack detection method effectively detects crack information in a complex environment, and achieves the current state-of-the-art accuracy. Compared to manual classification results, the classification accuracy of transversal and longitudinal cracks is higher than 95%, and the classification accuracy of block and alligator is above 86%.

Highlights

  • Automatic detection and classification of pavement cracks is an important part of intelligent transportation systems and acts as a primary rapid analysis of pavement distresses

  • MATERIALS AND METHODS the novel automatic pixel-level crack detection network is first developed according to the multiscale dilated attention (MDA) module, and the feature fusion upsampling (FFU) module

  • In this paper, a novel trainable convolutional network was proposed for automatic detection of cracks in complex environments

Read more

Summary

Introduction

Automatic detection and classification of pavement cracks is an important part of intelligent transportation systems and acts as a primary rapid analysis of pavement distresses. The implementation of a fast and accurate automatic pavement crack detection system is essential for maintaining and monitoring complex transportation networks, and is an effective way to improve the road service quality [1]. Pavement crack automatic detection and characterization systems perform three primary tasks: data acquisition, crack detection, The associate editor coordinating the review of this manuscript and approving it for publication was Long Wang. The research on automatic detection of pavement cracks is roughly divided into three methods: traditional image

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.