Abstract

We present an automatic parameter setting method to achieve an accurate second-order Kalman filter tracker based on a steady-state performance index. First, we propose an efficient steady-state performance index that corresponds to the root-mean-square (rms) prediction error in tracking. We then derive an analytical relationship between the proposed performance index and the generalized error covariance matrix of the process noise, for which the automatic determination using the derived relationship is presented. The model calculated by the proposed method achieves better accuracy than the conventional empirical model of process noise. Numerical analysis and simulations demonstrate the effectiveness of the proposed method for targets with accelerating motion. The rms prediction error of the tracker designed by the proposed method is 63.8% of that with the conventional empirically selected model for a target accelerating at 10 m/s <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.