Abstract
Axial Vertebral Rotation (AVR) is a significant indicator of adolescent idiopathic scoliosis (AIS). A host of methods are provided to measure AVR on coronal plane radiographs or 3D vertebral model. This paper provides a method of automatic AVR measurement in 3D vertebral model that is based on point cloud segmentation neural network and the tip of the spinous process searching algorithm. An improved PointNet using multi-input and attention mechanism named Multi-Input PointNet is proposed, which can segment the upper and lower endplates of the vertebral model accurately to determine the transverse plane of vertebral model. An algorithm is developed to search the tip of the spinous process according to the special structure of vertebrae. AVR angle is measured automatically using the midline of vertebral model and projection of y-axis on the transverse plane of vertebral model based on points obtained above. We compare automatic measurement results with manual measurement results on different vertebral models. The experiment shows that automatic results can achieve accuracy of manual measurement results and the correlation coefficient of them is 0.986, proving our automatic AVR measurement method performs well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.