Abstract

Bug-fixes are widely used for predicting bugs or finding risky parts of software. However, a bug-fix does not contain information about the change that initially introduced a bug. Such bug-introducing changes can help identify important properties of software bugs such as correlated factors or causalities. For example, they reveal which developers or what kinds of source code changes introduce more bugs. In contrast to bug-fixes that are relatively easy to obtain, the extraction of bugintroducing changes is challenging. In this paper, we present algorithms to automatically and accurately identify bug-introducing changes. We remove false positives and false negatives by using annotation graphs, by ignoring non-semantic source code changes, and outlier fixes. Additionally, we validated that the fixes we used are true fixes by a manual inspection. Altogether, our algorithms can remove about 38%~51% of false positives and 14%~15% of false negatives compared to the previous algorithm. Finally, we show applications of bug-introducing changes that demonstrate their value for research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.