Abstract

For the last years, a considerable amount of attention has been devoted to the research about the link prediction (LP) problem in complex networks. This problem tries to predict the likelihood of an association between two not interconnected nodes in a network to appear in the future. One of the most important approaches to the LP problem is based on supervised machine learning (ML) techniques for classification. Although many works have presented promising results with this approach, choosing the set of features (variables) to train the classifiers is still a major challenge. In this article, we report on the effects of three different automatic variable selection strategies (Forward, Backward and Evolutionary) applied to the feature-based supervised learning approach in LP applications. The results of the experiments show that the use of these strategies does lead to better classification models than classifiers built with the complete set of variables. Such experiments were performed over three datasets (Microsoft Academic Network, Amazon and Flickr) that contained more than twenty different features each, including topological and domain-specific ones. We also describe the specification and implementation of the process used to support the experiments. It combines the use of the feature selection strategies, six different classification algorithms (SVM, K-NN, naive Bayes, CART, random forest and multilayer perceptron) and three evaluation metrics (Precision, F-Measure and Area Under the Curve). Moreover, this process includes a novel ML voting committee inspired approach that suggests sets of features to represent data in LP applications. It mines the log of the experiments in order to identify sets of features frequently selected to produce classification models with high performance. The experiments showed interesting correlations between frequently selected features and datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.