Abstract

Abstract: A new approach based on an adaptive neuro-fuzzy inference system (ANFIS) is presented for diagnosis of diabetes diseases. The Pima Indians diabetes data set contains records of patients with known diagnosis. The ANFIS classifiers learn how to differentiate a new case in the domain by being given a training set of such records. The ANFIS classifier is used to detect diabetes diseases when eight features defining diabetes indications are used as inputs. The proposed ANFIS model combines neural network adaptive capabilities and the fuzzy logic qualitative approach. The conclusions concerning the impacts of features on the diagnosis of diabetes disease are obtained through analysis of the ANFIS. The performance of the ANFIS model is evaluated in terms of training performances and classification accuracies and the results confirm that the proposed ANFIS model has potential in detecting diabetes diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.