Abstract
In this article a simulated annealing based approach for automatically clustering a data set into a number of fuzzy partitions is proposed. This is in contrast to the widely used fuzzy clustering scheme, the fuzzy C-Means (FCM) algorithm, which requires the a priori knowledge of the number of clusters. The said approach uses a real-coded variable representation of the cluster centers encoded as a state of the simulated annealing, while optimizing the Xie-Beni cluster validity index. In order to automatically determine the number of clusters, the perturbation operator is defined appropriately so that it can alter the cluster centers, and increase as well as decrease the encoded number of cluster centers. The operators are designed using some domain specific information. The effectiveness of the proposed technique in determining the appropriate number of clusters is demonstrated for both artificial and real-life data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.