Abstract
Traditional studies of speaker state focus primarily upon one-stage classification techniques using standard acoustic features. In this article, we investigate multiple novel features and approaches to two recent tasks in speaker state detection: level-of-interest (LOI) detection and intoxication detection. In the task of LOI prediction, we propose a novel Discriminative TFIDF feature to capture important lexical information and a novel Prosodic Event detection approach using AuToBI; we combine these with acoustic features for this task using a new multilevel multistream prediction feedback and similarity-based hierarchical fusion learning approach. Our experimental results outperform published results of all systems in the 2010 Interspeech Paralinguistic Challenge – Affect Subchallenge. In the intoxication detection task, we evaluate the performance of Prosodic Event-based, phone duration-based, phonotactic, and phonetic-spectral based approaches, finding that a combination of the phonotactic and phonetic-spectral approaches achieve significant improvement over the 2011 Interspeech Speaker State Challenge – Intoxication Subchallenge baseline. We discuss our results using these new features and approaches and their implications for future research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.