Abstract

We present the automated design and manufacture of static and locomotion objects in which functionality is obtained purely by the unconstrained 3-D distribution of materials. Recent advances in multimaterial fabrication techniques enable continuous shapes to be fabricated with unprecedented fidelity unhindered by spatial constraints and homogeneous materials. We address the challenges of exploitation of the freedom of this vast new design space using evolutionary algorithms. We first show a set of cantilever beams automatically designed to deflect in arbitrary static profiles using hard and soft materials. These beams were automatically fabricated, and their physical performance was confirmed within 0.5-7.6% accuracy. We then demonstrate the automatic design of freeform soft robots for forward locomotion using soft volumetrically expanding actuator materials. One robot was fabricated automatically and assembled, and its performance was confirmed with 15% error. We suggest that this approach to design automation opens the door to leveraging the full potential of the freeform multimaterial design space to generate novel mechanisms and deformable robots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.