Abstract

This work is integrated in the MICCAI Grand Challenge: MR Brain Image Segmentation 2013. It aims for the automatic segmentation of brain into Cerebrospinal fluid (CSF), Gray matter (GM) and White matter (WM). The provided dataset contains patients with white matter lesions, which makes the segmentation task more challenging. The proposed algorithm uses multi-sequence MR images to extract meaningful features and learn a Random Decision Forest that classifies each voxel of the image. The results show that it is robust to the presence of the white matter lesions, and the metrics show that the overall results are competitive.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.