Abstract

The frequency of a weak signal is used for fault diagnosis and target identification in various fields. By introducing particle swarm optimization (PSO) and spectral entropy (SE), an automated weak signal frequency estimation method based on the Duffing oscillator is proposed. The proposed method uses the differential structure to enhance the timing difference of the Duffing oscillator between the chaotic and large-scale periodic states, which is quantitatively distinguished by SE. Then, the frequency of the internal driving force is adaptively adjusted by the PSO to allow the SE to reach a minimum value where the driving frequency equals the weak signal frequency. A group of weak signals with different frequencies has been tested. The maximum relative frequency error is only 0.68%. Unlike other chaotic oscillator-based frequency estimation methods, the proposed method does not need to determine the phase state manually. A rough initial frequency search range is sufficient for automatic frequency measurement of the proposed method in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.