Abstract

Mercedes-Benz has recently added a crosswind stabilization function to the Active Body Control (ABC) suspension for the 2009 S-Class. For this purpose the ABC uses the yaw rate, lateral acceleration, steering angle and velocity sensors of the Electronic Stability Program ESP to vary the wheel load distribution via the ABC spring struts, depending on the direction and intensity of the crosswind. This function has to distinguish between vehicle reactions caused by crosswind, by driver interaction, and by road unevenness. The effects of the crosswinds can be compensated in this way, or reduced to a minimum in the case of strong gusts. For developing this function Mercedes Benz used the test case generator TestWeaver to generate thousands of different driving and crosswind scenarios. The scenarios have been executed using a co-simulation of: (i) a dynamic vehicle model (based on the inhouse tool CASCaDE), (ii) a road and crosswind model implemented in C and (iii) a MathWorks/Simulink model of the crosswind stabilization function. This simulation-based approach helped considerably to validate and iteratively improve the safeguarding algorithms of the stabilization function through all design phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.