Abstract

This study investigates the use of automated machine learning to forecast the demand of electrical loads. A stochastic optimization algorithm minimizes the cost and risk of the traded asset across different markets using a generic framework for trading activities of load portfolios. Assuming an always overbought condition in the Day-Ahead as well as in the Futures Market, the excess energy returns without revenue to the market, and the results are compared with a standard contract in Greece, which stands as the lowest as far as the billing price is concerned. The analysis achieved a mean absolute percentage error (MAPE) of 12.89% as the best fitted model and without using any kind of pre-processing methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.