Abstract

Vesosomes - hierarchical assemblies consisting of membrane-bound vesicles of various scales - are potentially powerful models of cellular compartmentalization. Current methods of vesosome fabrication are labor intensive, and offer little control over the size and uniformity of the final product. In this article, we report the development of an automated vesosome formation platform using a microfluidic device and a continuous flow microcentrifuge. In the microfluidic device, water-in-oil droplets containing nanoscale vesicles in the water phase were formed using T-junction geometry, in which a lipid monolayer is formed at the oil/water interface. These water-in-oil droplets were then immediately transferred to the continuous flow microcentrifuge. When a water-in-oil droplet passed through a second lipid monolayer formed in the continuous flow microcentrifuge, a bilayer-encapsulated vesosome was created, which contained all of the contents of the aqueous phase encapsulated within the vesosome. Encapsulation of nanoscale liposomes within the outer vesosome membrane was confirmed by fluorescence microscopy. Laser diffraction analysis showed that the vesosomes we fabricated were uniform (coefficient of variation of 0.029). The yield of the continuous flow microcentrifuge is high, with over 60% of impinging water droplets being converted to vesosomes. Our system provides a fully automatable route for the generation of vesosomes encapsulating arbitrary contents. The method employed in this work is simple and can be readily applied to a variety of systems, providing a facile platform for fabricating multicomponent carriers and model cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.