Abstract
Proliferative diabetic retinopathy (PDR) is a condition that carries a high risk of severe visual impairment. The hallmark of PDR is neovascularisation, the growth of abnormal new vessels. This paper describes an automated method for the detection of new vessels in retinal images. Two vessel segmentation approaches are applied, using the standard line operator and a novel modified line operator. The latter is designed to reduce false responses to non-vessel edges. Both generated binary vessel maps hold vital information which must be processed separately. This is achieved with a dual classification system. Local morphology features are measured from each binary vessel map to produce two separate feature sets. Independent classification is performed for each feature set using a support vector machine (SVM) classifier. The system then combines these individual classification outcomes to produce a final decision. Sensitivity and specificity results using a dataset of 60 images are 0.862 and 0.944 respectively on a per patch basis and 1.00 and 0.90 respectively on a per image basis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.