Abstract

This paper proposes a general architecture for using evolutionary algorithms to achieve MEMS design synthesis. Functional MEMS devices are designed by combining parameterized basic MEMS building blocks together using Multi-objective Genetic Algorithms (MOGAs) to produce a pareto optimal set of feasible designs. The iterative design synthesis loop is implemented by combining MOGAs with the SUGAR MEMS simulation tool. Given a high-level description of the device’s desired behavior, both the topology and sizing are generated. The topology or physical configuration includes the number and types of basic building blocks and their connectivity. The sizing of the designs entails assigning numerical values to parameterized building blocks. A sample from the pareto optimal set of designs is presented for a meandering resonator example, along with convergence plots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.