Abstract

Hyperproperties have received increasing attention in the last decade due to their importance e.g. for security analyses. Past approaches have focussed on synchronous analyses, i.e. techniques in which different paths are compared lockstepwise. In this paper, we systematically study asynchronous analyses for hyperproperties by introducing both a novel automata model (Alternating Asynchronous Parity Automata) and the temporal fixpoint calculus H µ , the first fixpoint calculus that can systematically express hyperproperties in an asynchronous manner and at the same time subsumes the existing logic HyperLTL. We show that the expressive power of both models coincides over fixed path assignments. The high expressive power of both models is evidenced by the fact that decision problems of interest are highly undecidable, i.e. not even arithmetical. As a remedy, we propose approximative analyses for both models that also induce natural decidable fragments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.