Abstract

Ocriplasmin, a truncated form of plasmin, is commercialized in the USA and in Europe under the trade name Jetrea(®), and indicated for the treatment of symptomatic vitreomacular adhesion and vitreomacular traction including when associated with macular hole ≤400 µm, respectively. We have shown in a previous study that ocriplasmin undergoes autolytic degradation when injected in eye vitreous, which leads to its rapid inactivation. In order to investigate this process further, we have introduced in ocriplasmin a variety of amino acid substitutions within or in the immediate vicinity of the three major autolytic cleavage sites. We demonstrate here that autolytic inactivation of ocriplasmin is a sequential process where initial cleavage occurs primarily between residues 156 and 157. Reduction or even blocking of autolysis can be achieved by mutating a limited number of key residues. In this study, we also report the identification of a series of ocriplasmin variants with improved resistance to autolysis and unimpaired catalytic activity. Such variants represent useful tools for the exploration of therapeutic approaches aiming at non-surgical resolution of vitreomacular adhesion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.