Abstract

We present an unsupervised outlier detection method for galaxy spectra based on the spectrum autoencoder architecture spender, which reliably captures spectral features and provides highly realistic reconstructions for SDSS galaxy spectra. We interpret the sample density in the autoencoder latent space as a probability distribution, and identify outliers as low-probability objects with a normalizing flow. However, we found that the latent-space position is not, as expected from the architecture, redshift invariant, which introduces stochasticity into the latent space and the outlier detection method. We solve this problem by adding two novel loss terms during training, which explicitly link latent-space distances to data-space distances, preserving locality in the autoencoding process. Minimizing the additional losses leads to a redshift-invariant, nondegenerate latent-space distribution with clear separations between common and anomalous data. We inspect the spectra with the lowest probability and find them to include blends with foreground stars, extremely reddened galaxies, galaxy pairs and triples, and stars that are misclassified as galaxies. We release the newly trained spender model and the latent-space probability for the entire SDSS-I galaxy sample to aid further investigations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.