Abstract

The present work develops a theoretical procedure for obtaining transport coefficients of Yukawa systems from density fluctuations. The dynamics of Yukawa systems are described in the framework of the generalized hydrodynamic (GH) model that incorporates strong coupling and visco-elastic memory effects by using an exponentially decaying memory function in time. A hydrodynamic matrix for such a system is exactly derived and then used to obtain an analytic expression for the density autocorrelation function (DAF)—a marker of the time dynamics of density fluctuations. The present approach is validated against a DAF obtained from numerical data of Molecular Dynamics (MD) simulations of a dusty plasma system that is a practical example of a Yukawa system. The MD results and analytic expressions derived from the model equations are then used to obtain various transport coefficients and the latter are compared with values available in the literature from other models. The influence of strong coupling and visco-elastic effects on the transport parameters are discussed. Finally, the utility of our calculations for obtaining reliable estimates of transport coefficients from experimentally determined DAF is pointed out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.