Abstract

In laser-induced selective metallization (LISM), conventional laser activators only work at a single laser wavelength. This study reported a new laser activator (MoO3) very suitable for both 355 nm UV and 1064 nm near-infrared (NIR) lasers for the first time. When applying MoO3 to polymers, the prepared Cu layer on laser-activated polymers showed a good conductivity (2.63 × 106 Ω-1·m-1) and excellent adhesion. Scanning electron microscopy, optical microscopy, and resistance analysis revealed the excellent LISM performance of the polymer/MoO3 composites, and the quality of the Cu layer prepared using the UV laser is much better than that using the NIR laser. The limit width of the copper wire prepared by the UV laser is as narrow as 30.1 μm. We also confirmed the mechanism of MoO3 initiating electroless copper plating after laser activation to be the autocatalytic mechanism, which is very different from the conventional reduction mechanism. The effect of laser activation was only to expose the MoO3 active species to the polymer surface. X-ray diffraction and tube experiments revealed that the activity of α·h-MoO3 was higher than that of α-MoO3. X-ray photoelectron spectroscopy indicated that a part of Mo6+ was reduced to Mo5+ during laser activations, leading to the increase of the oxygen vacancies in MoO3 and possibly further enhancing the activity of MoO3. Besides, the micro-rough structures caused by the laser on the polymer surface provided riveting points for successfully depositing the copper layer. The Ni-Cu, Ag-Cu, and Au-Ni-Cu layers were obtained via the continued deposit of other metals on the Cu layer. The resistances of these metal layers had much better stability than that of the neat Cu layer. Furthermore, the Au layer further enhanced the conductivity of the circuit. The proposed strategy is easy for large-scale industrial applications, which will greatly expand the application scenarios of the LISM field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.