Abstract

A framed structure may be composed of two sub-structures, which are linked by a hinged joint. One sub-structure is the primary system and the other is the secondary system. The primary system, which is subjected to the periodic external load, can give rise to an auto-parametric resonance of the second system. Considering the geometric-stiffness effect produced by the axially internal force, the element equation of motion is derived by the extended Hamilton's principle. The element equations are then assembled into the global non-homogeneous Mathieu-Hill equations. The Newmark's method is introduced to solve the time-history responses of the non-homogeneous Mathieu-Hill equations. The energy-growth exponent/coefficient (EGE/EGC) and a finite-time Lyapunov exponent (FLE) are proposed for determining the auto-parametric instability boundaries of the structural system. The auto-parametric instabilities are numerically analyzed for the two frames. The influence of relative stiffness between the primary and secondary systems on the auto-parametric instability boundaries is investigated. A phenomenon of the "auto-parametric internal resonance" (the auto-parametric resonance of the second system induced by a normal resonance of the primary system) is predicted through the two numerical examples. The risk of auto-parametric internal resonance is emphasized. An auto-parametric resonance experiment of a <TEX>${\Gamma}$</TEX>-shaped frame is conducted for verifying the theoretical predictions and present calculation method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.