Abstract

Eukaryotic cell division requires the mitotic spindle, a microtubule (MT)-based structure which accurately aligns and segregates duplicated chromosomes. The dynamics of spindle formation are determined primarily by correctly localising the MT nucleator, γ-Tubulin Ring Complex (γ-TuRC), within the cell. A conserved MT-associated protein complex, Augmin, recruits γ-TuRC to pre-existing spindle MTs, amplifying their number, in an essential cellular phenomenon termed ‘branching’ MT nucleation. Here, we purify endogenous, GFP-tagged Augmin and γ-TuRC from Drosophila embryos to near homogeneity using a novel one-step affinity technique. We demonstrate that, in vitro, while Augmin alone does not affect Tubulin polymerisation dynamics, it stimulates γ-TuRC-dependent MT nucleation in a cell cycle-dependent manner. We also assemble and visualise the MT-Augmin-γ-TuRC-MT junction using light microscopy. Our work therefore conclusively reconstitutes branching MT nucleation. It also provides a powerful synthetic approach with which to investigate the emergence of cellular phenomena, such as mitotic spindle formation, from component parts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.