Abstract
User authentication over the network builds a foundation of trust within large-scale computer networks. The collection of this network authentication activity provides valuable insight into user behavior within an enterprise network. Representing this authentication data as a set of user-specific graphs and graph features, including time-constrained attributes, enables novel and comprehensive analysis opportunities. We show graph-based approaches to user classification and intrusion detection with practical results. We also show a method for assessing network authentication trust risk and cyber attack mitigation within an enterprise network using bipartite authentication graphs. We demonstrate the value of these graph-based approaches on a real-world authentication data set collected from an enterprise network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.