Abstract

The kinetics, morphology, and elemental distributions associated with the decomposition of austenite in Fe-0.30C-6.3W were surveyed, especially in the bay region of the time-temperature-transformation (TTT) diagram. Carbide precipitation characteristics were of particular interest. Similar to Fe-C-Mo and Fe-C-Cr alloys, grain- and twin-boundary bainite containing sheets of alloy carbides dominated the microstructure at and above the bay, while popcorn-like bainite was observed immediately below the bay. Nonequilibrium carbide-phase combinations were obtained both above and below the bay, although W partitioning to the alloy carbides was always observed. The carbon level in the remaining austenite increased with reaction time at a given temperature, which, at the later stages of reaction, helped trigger the growth of a constituent containing a high density of nonlamellar carbides. These nonequilibrium reaction-path characteristics are considered to originate from crystallographic and interfacial structure constraints affecting the nucleation of carbides at ferrite-austenite interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.