Abstract
Simultaneous removal of organic and zinc contamination in parallel effluent streams using a Microbial Fuel Cell (MFC) would deliver a means of reducing environmental pollution whilst also recovering energy. A Microbial Fuel Cell system has been integrated with Supported Liquid Membrane (SLM) technology to simultaneously treat organic- and heavy metal containing wastewaters. The MFC anode was fed with synthetic wastewater containing 10 mM acetate, the MFC cathode chambers were fed with 400 mg L−1 Zn2+ and this then acted as a feed phase for SLM extraction. The MFC/SLM combination produces a synergistic effect which enhances the power performance of the MFC significantly; 0.233 mW compared to 0.094 mW in the control. It is shown that the 165 ± 7 mV difference between the MFC/SLM system and the MFC control is attributable to the lower cathode pH in the integrated system experiment, the consequent lower activation overpotential and higher oxygen reduction potential. The change in the substrate removal efficiency and Coulombic Efficiency (CE) compared to controls is small. Apart from the electrolyte conductivity, the conductivities of the bipolar and liquid membrane were also found to increase during operation. The diffusion coefficient of Zn2+ through the liquid membrane in the MFC/SLM (4.26*10−10 m2 s−1) is comparable to the SLM control (5.41*10−10 m2 s−1). The system demonstrates that within 72 h, 93 ± 4% of the zinc ions are removed from the feed phase, hence the Zn2+ removal rate is not significantly affected and is comparable to the SLM control (96 ± 1%), while MFC power output is significantly increased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.