Abstract

This paper summarizes the results of a study to determine the heat transfer and pressure drop characteristics of two types of tube inserts developed specifically for augmenting heat transfer and accommodating high heat fluxes. The best performing mesh-insert tubes exhibited heat transfer coefficients nine times the coefficients with empty tubes while brush-insert tubes had coefficients averaging five times the empty tube values, both comparisons being made at equal mass velocity. Both inserts produced very large pressure drops. Subcooled boiling curves and burnout points are presented; burnout heat fluxes are two to three times the empty tube values at equal mass velocity. For single-phase conditions and for burnout, the mesh and brush tubes have favorable performance characteristics, based on pumping power, which suggest use of these inserts in certain special cooling systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.