Abstract

This paper studies the economic operations of the microgrid in a distributed way such that the operational schedule of each of the units, like generators, load units, storage units, etc., in a microgrid system, is implemented by autonomous agents. We apply and generalise the progressive second price (PSP) auction mechanism which was proposed by Lazar and Semret to efficiently allocate the divisible network resources. Considering the economic operation for the microgrid systems, the generators play as sellers to supply energy and the load units play as the buyers to consume energy, while a storage unit, like battery, super capacitor, etc., may transit between buyer and seller, such that it is a buyer when it charges and becomes a seller when it discharges. Furthermore in a connected mode, each individual unit competes against not only the other individual units in the microgrid but also the exogenous main grid possessing fixed electricity price and infinite trade capacity; that is to say, the auctioneer assigns the electricity among all individual units and the main grid with respect to the submitted bid strategies of all individual units in the microgrid in an economic way. Due to these distinct characteristics, the underlying auction games are distinct from those studied in the literature. We show that under mild conditions, the efficient economic operation strategy is a Nash equilibrium (NE) for the PSP auction games, and propose a distributed algorithm under which the system can converge to an NE. We also show that the performance of worst NE can be bounded with respect to the system parameters, say the energy trading price with the main grid, and based upon that, the implemented NE is unique and efficient under some conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.