Abstract
We present a light trapping structure consisting of AuAg bimetallic nonalloyed nanoparticles (BNNPs) on cone-shaped GaAs subwavelength structures (SWSs), combining the advantages of plasmonic structures and SWSs for GaAs-based solar cell applications. To obtain efficient light trapping in solar cells, the optical properties' dependence on the size and composition of the Ag and Au metal nanoparticles was systematically investigated. Cone-shaped GaAs SWSs with AuAg BNNPs formed from an Au film of 12 nm and an Ag film of 10 nm exhibited the extremely low average reflectance (R(avg)) of 2.43% and the solar-weighted reflectance (SWR) of 2.38%, compared to that of a bare GaAs substrate (R(avg), 37.50%; SWR, 36.72%) in the wavelength range of 300 to 870 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.