Abstract

A green and efficient approach for efficient nanohybrid photocatalysts in extending the light response to the visible spectrum is a hot research topic in sustainable energy technologies. In this work, novel Au-TiO2@m-CN nanocomposite was synthesized using hard template of cubic ordered mesoporous KIT-6 via the nanocasting process. The as-prepared Au-TiO2@m-CN nanohybrids exhibit enhanced photocatalytic activities with improved stability and reusability using methyl orange dye. The enhanced photocatalytic performance is a result of the conjugated effect of catalytic active Au and TiO2 nanoparticles supported on highly efficient visible light sensitizer, graphitic carbon nitride (m-CN or g-C3N4), and ordered mesoporous morphology. Besides, the sensing performance of Au-TiO2@m-CN nanohybrids was also tested for the detection of amine gases, wherein a significant response was reported for triethylamine at low operating temperatures. This study reveals a simple and scalable methodology to design and develop next generation of layered mesoporous materials for multifunctional applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.