Abstract

Formation of metal-semiconductor core-shell heterostructures with precise morphological control of both components remains challenging. Heterojunctions, rather than core-shell structures, were typically produced for metal-semiconductor composites. Furthermore, growth of semiconductor shells with systematic shape evolution using the same metal particle cores can also present a significant challenge. Here, we have synthesized Au-Cu(2)O core-shell heterostructures using gold nanoplates, nanorods, octahedra, and highly faceted nanoparticles as the structure-directing cores for the overgrowth of Cu(2)O shells by a facile aqueous solution approach. The gold nanoparticle cores guide the growth of Cu(2)O shells with morphological and orientation control. Systematic shape evolution of the shells can be easily achieved by simply adjusting the volume of reductant added. For example, truncated cubic to octahedral Cu(2)O shells were produced from octahedral gold nanocrystal cores. Unusual truncated stellated icosahedral and star column structures have also been synthesized. The heterostructures were found to be formed via an unusual hollow-shell-refilled growth mechanism not reported before. The approach has potential toward the preparation of other complex Cu(2)O structures with well-defined facets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.