Abstract

Patient attribution, or the process of attributing patient-level metrics to specific providers, attempts to capture real-life provider-patient interactions (PPI). Attribution holds wide-ranging importance, particularly for outcomes in graduate medical education, but remains a challenge. We developed and validated an algorithm using EHR data to identify pediatric resident PPIs (rPPIs). We prospectively surveyed residents in three care settings to collect self-reported rPPIs. Participants were surveyed at the end of primary care clinic, emergency department (ED), and inpatient shifts, shown a patient census list, asked to mark the patients with whom they interacted, and encouraged to provide a short rationale behind the marked interaction. We extracted routine EHR data elements, including audit logs, note contribution, order placement, care team assignment, and chart closure, and applied a logistic regression classifier to the data to predict rPPIs in each care setting. We also performed a comment analysis of the resident-reported rationales in the inpatient care setting to explore perceived patient interactions in a complicated workflow. We surveyed 81 residents over 111 shifts and identified 579 patient interactions. Among EHR extracted data, time-in-chart was the best predictor in all three care settings (primary care clinic: odds ratio [OR] = 19.36, 95% confidence interval [CI]: 4.19-278.56; ED: OR = 19.06, 95% CI: 9.53-41.65' inpatient: OR = 2.95, 95% CI: 2.23-3.97). Primary care clinic and ED specific models had c-statistic values > 0.98, while the inpatient-specific model had greater variability (c-statistic = 0.89). Of 366 inpatient rPPIs, residents provided rationales for 90.1%, which were focused on direct involvement in a patient's admission or transfer, or care as the front-line ordering clinician (55.6%). Classification models based on routinely collected EHR data predict resident-defined rPPIs across care settings. While specific to pediatric residents in this study, the approach may be generalizable to other provider populations and scenarios in which accurate patient attribution is desirable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.