Abstract

This paper is devoted to the long-term behavior of nonautonomous random lattice dynamical systems with nonlinear diffusion terms. The nonlinear drift and diffusion terms are not expected to be Lipschitz continuous but satisfy the continuity and growth conditions. We first prove the existence of solutions, and establish the existence of a multi-valued nonautonomous cocycle. We then show the existence and uniqueness of pullback attractors parameterized by sample parameters. Finally, we establish the measurability of this pullback attractor by the method based on the weak upper semicontinuity of the solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.