Abstract

This paper deals with the linear systemx′=A(t)x\mathbf {x}’ = A(t)\mathbf {x}withA(t)A(t)being a2×22\times 2matrix. The anti-diagonal components ofA(t)A(t)are assumed to be periodic, but the diagonal components are not necessarily periodic. Our concern is to establish sufficient conditions for the zero solution to be attractive. Floquet theory is of no use in solving our problem, because not all components are periodic. Another approach is adopted. Some simple examples are included to illustrate the main result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.