Abstract

AbstractThis paper focuses on the attitude dynamics and control of liquid filled spacecraft, and the large amplitude fuel slosh dynamics is included by using an improved moving pulsating ball model. The moving pulsating ball model is an equivalent mechanical model that is capable of imitating the whole liquid reorientation process, specifically for the occurrence of large amplitude slosh. This model is improved by incorporating a static capillary force and an effective mass factor. The improvements on this model are validated with previously published experiment results. The spacecraft attitude maneuver is implemented by the momentum transfer technique, and the feedback control strategy is designed based on Lyapunov theory. The effects of liquid viscosity, tank location and desired steady time on sloshing torque and control torque are investigated. The attitude control strategy applied in this paper is proved to be applicable for the coupled liquid filled spacecraft system. The obtained conclusions are useful to aid in liquid filled spacecraft overall design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.